Balancing Valves

V4 Kombi-F Series

FLANGED BALANCING AND SHUT-OFF VALVES

PRODUCT SPECIFICATION SHEET

Design

- Valve body with flanges drilled to DIN
- Valve insert with handwheel and pre-setting display
- Pressure test cocks

Materials

- Valve housing made of cast iron GG25, painted blue
- Valve insert made of cast steel with seat sealing made of PTFF
- Pressure test cocks made of brass
- Handwheel made of ductile iron, fusion bonded epoxy coated
- Fairing made of plastic black

CONTENTS

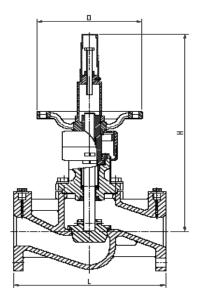
•	Design	1
•	Materials	1
•	Application	1
•	Features	1
•	Specifications	2
•	Dimensions and ordering information	2
•	Flow diagrams V4 Kombi-F	3 to 12
•	Influence of coolants on flow values	13
	Correction factor f	13

Application

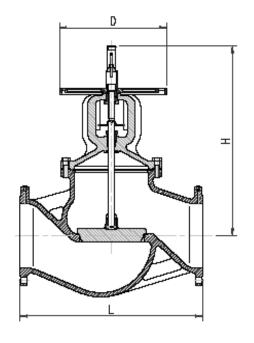
The hydronic balance is a significant requirement for the efficient operation of a hydronic heating or cooling installation. In an unbalanced system under or over provision of hot water to individual radiators or circuits can occur. Apart from the correct selection of radiator valves, regulation of individual circuits is also necessary and in some cases, such as DIN 18 380, VOB part C, is required by national standards. This requirement is met with V4 Kombi shutoff and balancing valves. V4 Kombi have functions shut-off, pre-setting and measuring.

Features

- Balancing through stroke limitation with digital pre-setting and visible pre-setting indicator
- Equipped with 2 pressure test cocks for differential pressure measurement
- Non rising spindle with EPDM and EPDM O-ring sealing
- Pre-setting isn't altered when handwheel is turned
- Regulation screw protected by protection cap
- PTFE seat sealing
- Valve cartridge and spindle made of cast steel
- Available in dimensions up to DN400


Specifications

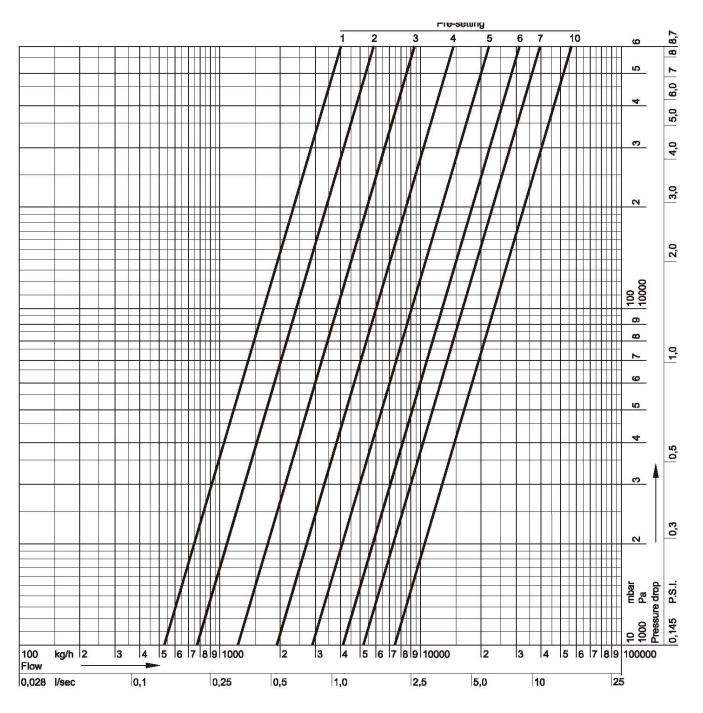
MediumWater, water-glycol mixtureOperating-10 to 130 °C (14 to 248 °F)


temperature

Operating pressure max. 16 bar (232 p.s.i.) kvs-values see table below and flow

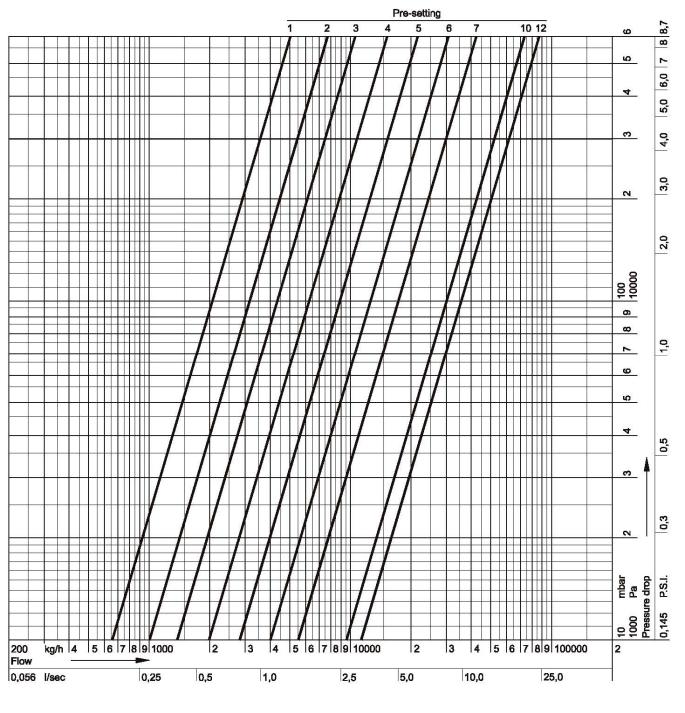
Dimensions and ordering information

DN 65 to DN 200

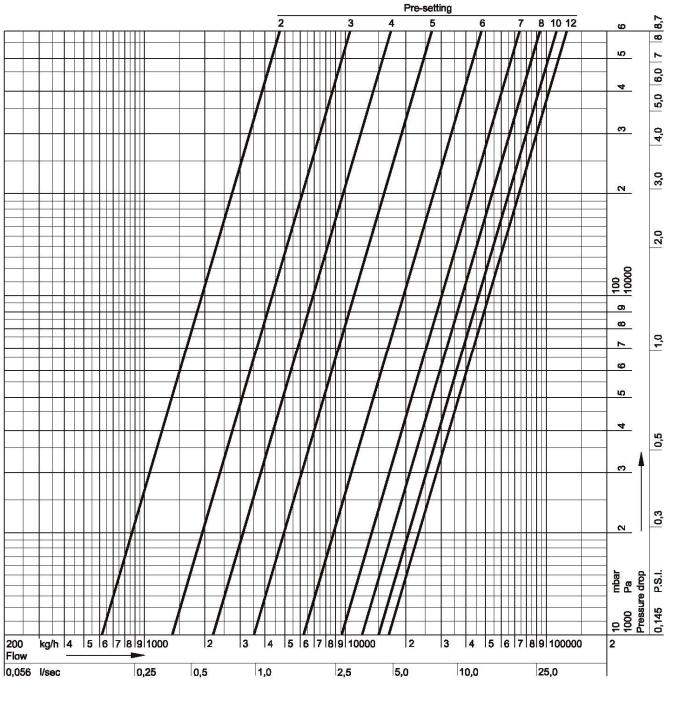


DN 250 to DN 300

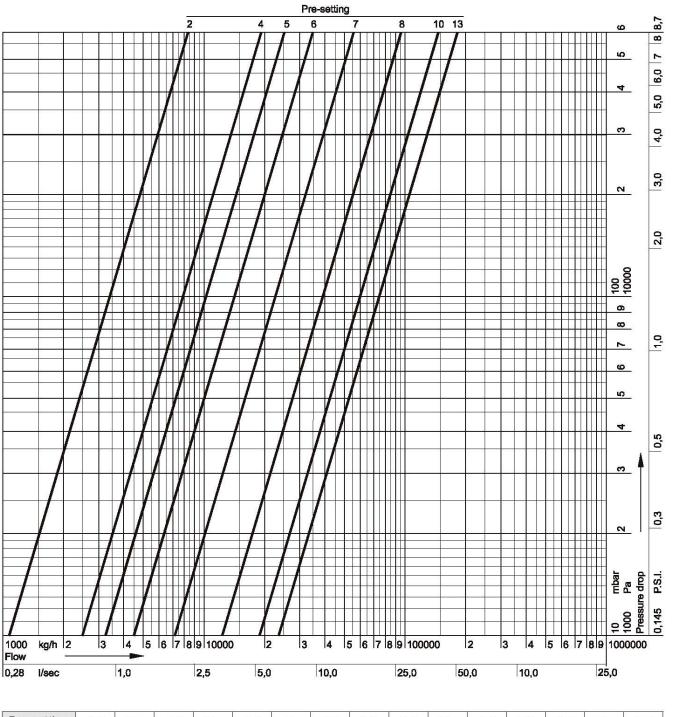
DN	(R)	k _{vs} - value	L	Н	Ø D	n x Ø d	OS-No.
65	2 1/2"	74,4	290	428	190	4 x 18	V4-BLC-GP16-G065
80	3"	111	310	430	190	8 x 18	V4-BLC-GP16-G080
100	4"	165	350	470	190	8 x 18	V4-BLC-GP16-G100
125	5"	242	400	515	305	8 x 18	V4-BLC-GP16-G125
150	6"	372	480	579	305	8 x 22	V4-BLC-GP16-G150
200	8"	704	600	665	305	8 x 22	V4-BLC-GP16-G200


	DN	(R)	k _{vs} - value	L	Н	ØD	n x Ø d	OS-No.
	250	10"	945	730	835	515	12 x 22	V4-BLC-GP16-G250
Ī	300	12"	1.635	850	883	515	12 x 26	V4-BLC-GP16-G300

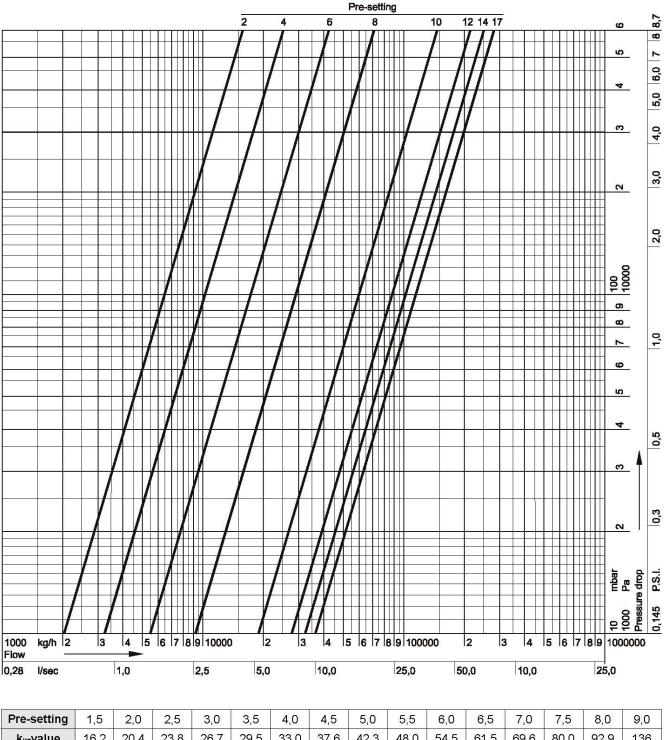
NOTE: All dimensions in mm unless otherwise stated


24		0	.7		.0		.0								
Pre-setting	0,5	1,0	1,5	2,0	2,5	3,0	3,5	4,0	4,5	5,0	5,5	6,0	6,5	7,0	8,0
k _v -value	2,98	5,30	6,64	7,80	9,60	12,1	15,2	19,0	23,6	29,1	35,2	41,3	47,0	52,1	60,7

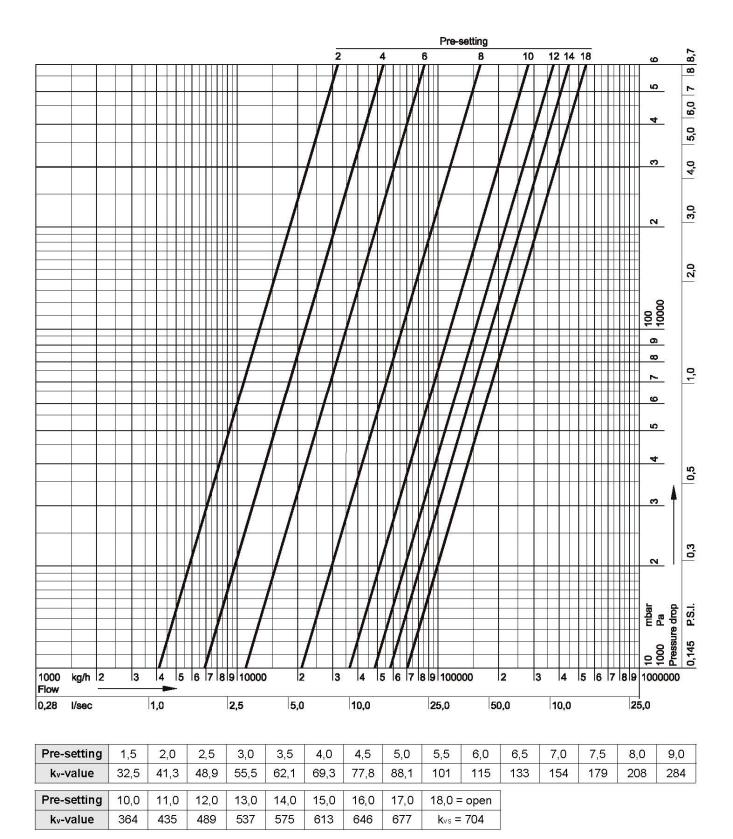
Pre-setting	9,0	10,0 = open
k _v -value	67,9	$k_{VS} = 74,4$

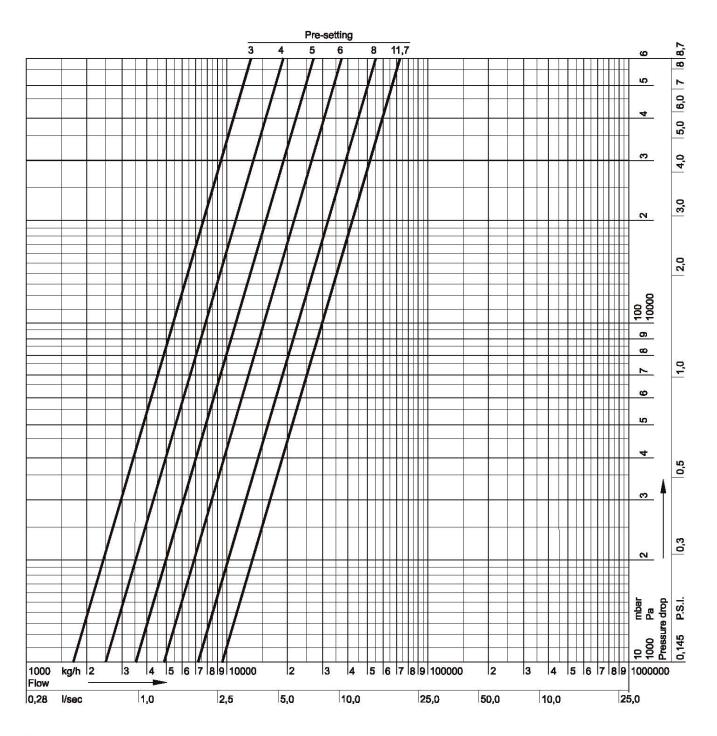

Pre-setting	0,5	1,0	1,5	2,0	2,5	3,0	3,5	4,0	4,5	5,0	6,0	7,0	8,0	9,0	10,0
k _v -value	3,65	6,60	8,52	10,0	11,7	13,7	16,1	19,2	23,2	28,1	40,4	55,4	70,9	84,8	96,1

Pre-setting	11,0	12,0 = open
k _v -value	104	k vs = 111

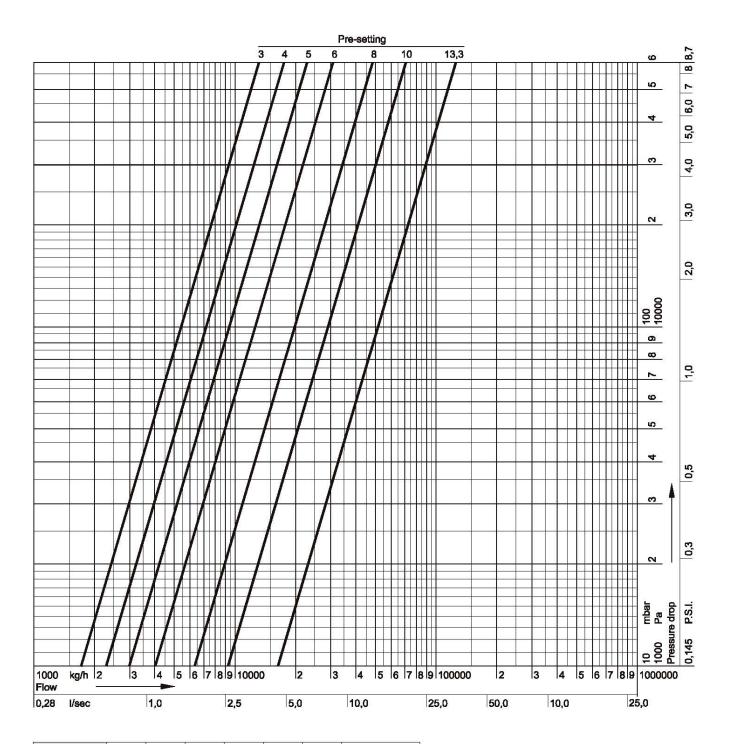

Pre-setting	1,5	2,0	2,5	3,0	3,5	4,0	4,5	5,0	5,5	6,0	6,5	7,0	7,5	8,0	9,0
k _v -value	3,80	6,20	9,60	13,4	17,3	21,8	27,6	35,7	47,2	62,4	79,3	96,6	110	121	137

Pre-setting	10,0	11,0	12,0 = open
k _v -value	148	157	kvs = 165

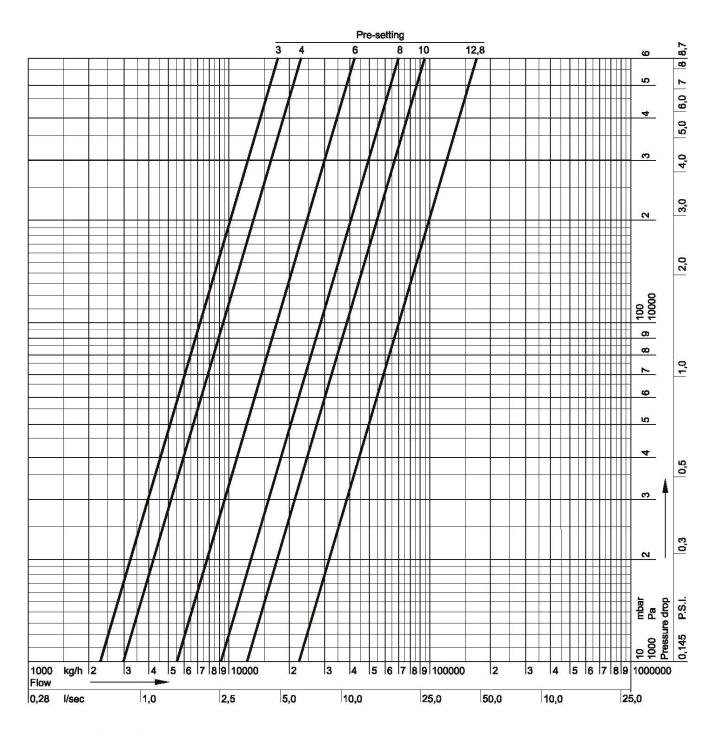



_			-					e e e e e e e e e e e e e e e e e e e				0			
Pre-setting	1,5	2,0	2,5	3,0	3,5	4,0	4,5	5,0	5,5	6,0	6,5	7,0	7,5	8,0	9,0
k _v -value	8,30	11,3	14,4	17,7	21,1	24,6	28,2	32,3	37,4	44,9	56,1	72,5	93,2	120	162

Pre-setting	10,0	11,0	12,0	13,0 = open
k _v -value	192	211	225	kvs = 236



Pre-setting	1,5	2,0	2,5	3,0	3,5	4,0	4,5	5,0	5,5	6,0	6,5	7,0	7,5	8,0	9,0
k _v -value	16,2	20,4	23,8	26,7	29,5	33,0	37,6	42,3	48,0	54,5	61,5	69,6	80,0	92,9	136
Pre-setting	10,0	11,0	12,0	13,0	14,0	15,0	16,0	17,0 = open							
k _v -value	193	240	274	300	320	337	352	k _{vs} = 365							




Pre-setting	3	4	5	6	8	11,7 = open
k _v -value	170	250	356	488	722	k _{vs} = 945

Pre-setting	3	4	5	6	8	10	13,3 = open
k _v -value	170	230	300	400	630	930	k _{vs} = 1.635

Pre-setting	3	4	6	8	10	12,8 = open
k _v -value	220	300	550	810	1.320	k _{vs} = 2.220

Pre-setting	3	4	6	8	10	12	14,3 = open
k _v -value	390	520	950	1.390	1.900	2.600	k _{vs} = 3.180

Influence of coolants on flow values

The flow through a valve is defined by the kv-value. The kv-value is the flow m through a valve in [m³/h] at a differential pressure of 1 bar (14,5 P.S.I.) and is only valid for fluids with a density of $\sigma 0 = 1000 \text{ kg/m}^3$. This condition is met by water at a temperature of 20°C (68°F). For fluids with another density the following formula can be applied:

$$Kv_{Medium} = \frac{m}{\sqrt{\Delta p}} \times \frac{\sqrt{\rho_{Medium}}}{\sqrt{\rho_0}}$$

Correction factor f

When the density σ is expressed in t/m³ instead of kg/m³ the correction factor f is the result. The correction factor f can be used to re-calculate kv-value, pressure drop and flow:

$$Kv_{\mathit{Medium}} = Kv_0 \times \frac{1}{\sqrt{f}} \qquad \qquad \Delta p_{\mathit{Medium}} = \Delta p_0 \times f \qquad \qquad m_{\mathit{Medium}} = m_0 \times \frac{1}{\sqrt{f}}$$

Table 1. Values for correction factor f

		Correction factor f					
Medium	water part	5°C (41°F)	20°C (68°F)	35°C (95°F)	50°C (122°F)	65°C (149°F)	80°C (176°F)
Normal water	100%	1,000	0,998	0,994	0,988	0,981	0,972
Ethylen glycol	70%	1,052	1,047	1,041	1,033	10,24	1,015
e.g. Antifrogen N	50%	1,086	1,079	1,070	1,061	1,052	1,042
Propylen glycol	70%	1,035	1,029	1,021	1,012	1,002	0,991
e.g. Antifrogen L	50%	1,053	1,044	1,035	1,025	1,014	1,002